翻訳と辞書
Words near each other
・ Experimenterende Danske Radioamatører
・ Experimenting with Babies
・ Experiments and Observations on Different Kinds of Air
・ Experiments and Observations on Electricity
・ Experiments in Alchemy
・ Experiments in Art and Technology
・ Experiments in Ethics
・ Experiments in Expectation
・ Experiments in Fluids
・ Experiments in immunology
・ Experiments in Living
・ Experiments in Mass Appeal
・ Experiments in the Revival of Organisms
・ Experiments of Rayleigh and Brace
・ Experiments on Plant Hybridization
Experimentum crucis
・ Experimetrics
・ Experion Technologies
・ Experix
・ Expert
・ Expert (company)
・ Expert (disambiguation)
・ Expert (magazine)
・ Expert Choice
・ Expert Committee on Questions of Population and Racial Policy
・ Expert Common Knowledge
・ Expert determination
・ Expert elicitation
・ Expert Field Medical Badge
・ Expert Gamer


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Experimentum crucis : ウィキペディア英語版
Experimentum crucis

In the sciences, an ''experimentum crucis'' (English: crucial experiment or critical experiment) is an experiment capable of decisively determining whether or not a particular hypothesis or theory is superior to all other hypotheses or theories whose acceptance is currently widespread in the scientific community. In particular, such an experiment must typically be able to produce a result that rules out all other hypotheses or theories if true, thereby demonstrating that under the conditions of the experiment (''i.e.'', under the same external circumstances and for the same "input variables" within the experiment), those hypotheses and theories are ''proven false'' but the experimenter's hypothesis ''is not ruled out''. Francis Bacon in his ''Novum Organum'' first described the concept of a situation in which one theory but not others would hold true, using the name ''instantia crucis''; the phrase ''experimentum crucis'', denoting the deliberate creation of such a situation for the purpose of testing the rival theories, was later coined by Robert Hooke and then famously used by Isaac Newton.
The production of such an experiment is considered necessary for a particular hypothesis or theory to be considered an established part of the body of scientific knowledge. It is not unusual in the history of science for theories to be developed fully before producing a critical experiment. A given theory which is in accordance with known experiment but which has not yet produced a critical experiment is typically considered worthy of exploration in order to discover such an experimental test.
In his Philosophiæ Naturalis Principia Mathematica, Isaac Newton (1687) presents a disproof of Descartes' vortex theory of the motion of the planets.〔Isaac Newton (1687), ''Principia Mathematica'' Book iii, Proposition 43, General Scholium and Book ii, Section ix, Proposition 53, as referenced by William Stanley Jevons (1874), ''The Principles of Science: A Treatise on Logic and Scientific Method'' p. 517.〕 In his Opticks, Newton describes an optical ''experimentum crucis'' in the ''First Book, Part I, Proposition II, Theorem II, Experiment 6'', to prove that sunlight consists of rays that differ in their index of refraction.
A famous example in the 20th century of an ''experimentum crucis'' was the expedition led by Arthur Eddington to Principe Island in Africa in 1919 to record the positions of stars around the Sun during a solar eclipse. The observation of star positions confirmed predictions of gravitational lensing made by Albert Einstein in the general theory of relativity published in 1915. Eddington's observations were considered to be the first solid evidence in favor of Einstein's theory.
In some cases, a proposed theory can account for existing anomalous experimental results for which no other existing theory can furnish an explanation. An example would be the ability of the quantum hypothesis, proposed by Max Planck in 1900, to account for the observed black-body spectrum, an experimental result that the existing classical Rayleigh–Jeans law could not predict. Such cases are not considered strong enough to fully establish a new theory, however, and in the case of quantum mechanics, it took the confirmation of the theory through ''new'' predictions for the theory to gain full acceptance.
For an opposite view putting into question the decisive value of the experimentum crucis in choosing one hypothesis or theory over its rival see Pierre Duhem.
==See also ==

* Material conditional
* Falsifiability
* Scientific method
* Therefore sign
* Q.E.D.
* Cross-validation (disambiguation)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Experimentum crucis」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.